当前位置:首页 > DeepSeek技术交流 > 正文内容

400亿参数大模型:分布式算力,DeepSeek架构,3090单卡部署

3个月前 (05-19)DeepSeek技术交流261

闻乐 发自 凹非寺量子位 | 公众号 QbitAI

打破科技巨头算力垄断,个人开发者联手也能训练超大规模AI模型?

Nous Research宣布推出Psyche Network,可以将全球算力整合起来训练强大的人工智能。

Psyche是一个基于Deepseek的V3 MLA架构的去中心化训练网络,测试网首次启动时直接对40B参数LLM进行预训练,可以在单个H/DGX上训练,并在3090 GPU上运行。

以往类似规模的模型训练往往需要耗费大量的资源和时间,并且通常是由大型科技公司或专业研究机构凭借其雄厚的资金和算力优势来完成的。

Psyche的出现让个人和小团体也可获取资源创建独特大规模模型。

对此,有网友表示,Nous Research有潜力成为新的前沿AI实验室。

技术突破和网络架构

DisTrO优化器

在传统AI训练中,数据需在中心服务器与分布式GPU之间高频传输,带宽不足会导致GPU利用率暴跌。

2024年Nous研发的DisTrO分布式训练优化器,通过梯度压缩(仅传输关键参数更新)和异步更新策略,将跨节点通信的数据量降低90%以上,突破了训练过程中的带宽限制,使得训练可以去中心化。

点对点网络堆栈

Psyche创建了一个自定义的点对点网络堆栈,用于协调全球分布式GPU运行DisTrO。

这个基于P2P(点对点)协议的专用网络层,无需依赖中心化服务器协调,全球GPU可直接通过加密通道交换梯度数据。

这一设计彻底摆脱了对传统云服务商高带宽网络的依赖,即使是家用宽带连接的GPU,也能稳定参与训练。

系统架构

Psyche网络架构有三个主要部分:

coordinator:协调器,存储有关训练运行状态和参与者列表的元数据。处理一轮训练中每个阶段之间的转换,且负责为运行中的所有客户端提供同步点。

clients:客户端,负责训练、见证和验证。每个客户端都保持自身状态与协调器同步。

data provider:负责提供训练所需的数据。可以是本地的也可以是HTTP或 CP提供者。

40B参数LLM预训练

此前互联网公开的大规模预训练多由Meta、Google等巨头主导(如LLaMA 2的700亿参数模型),Psyche以去中心化模式实现同等级别训练。

Psyche首次测试网运行使用的是Deepseek的V3 MLA架构。

MLA通过低秩联合压缩键值和矩阵分解技术,降低计算复杂度与内存占用,使 400 亿参数大语言模型在有限算力下高效训练。

多头注意力机制与潜空间表示学习相结合,提升模型语言理解与生成能力;并且,旋转位置嵌入的运用,有效解决长序列位置依赖问题,从多维度保障了训练的高效性与模型性能的优质性。

数据集:

使用了FineWeb(14T)、去除部分不常见语言的FineWeb-2(4T)和The Stack v2(1T),些数据集涵盖丰富信息,为模型训练提供了有力支持。

分布式训练策略:

模型并行与数据并行结合:将400亿参数拆解为128个分片,分布在不同节点进行 “模型并行” 训练,同时每个节点处理独立的数据批次(“数据并行”),通过DisTrO优化器同步梯度更新。动态自适应批量大小:根据节点网络延迟自动调整每个批次的训练数据量(如高延迟节点使用较小批次,减少等待时间),使全局训练效率提升25%。未来将是分布式训练的天下?

随着AI模型参数规模呈指数级增长,传统集中式训练模式正面临算力垄断、成本高昂和扩展性瓶颈的严峻挑战。

分布式训练的崛起,正在彻底改写这一格局。

就在几天前,Prime Intellect发布了首个分布式RL训练模型INTELLEC-2,引起了广泛关注。

Nous Research也称Psyche初始训练只是起点,后续计划整合监督微调、强化学习等完整的训练后阶段工作,以及推理和其他可并行工作负载。

谁能站稳分布式训练擂台?当然,我们期待更多更优秀的成果~

感兴趣的小伙伴可以到官方查看更加详细的内容。博客:https://nousresearch.com/nous-psyche/训练仪表板:https://psyche.network代码:https://github.com/PsycheFoundation/psyche文档:https://docs.psyche.network论坛:https://forum.psyche.networkHuggingFace:https://huggingface.co/PsycheFoundationDiscord:https://discord.com/invite/jqVphNsB4H参考链接:[1]https://x.com/NousResearch/status/1922744494002405444[2]https://x.com/PrimeIntellect/status/1921730059620196772

— 完 —


“400亿参数大模型:分布式算力,DeepSeek架构,3090单卡部署” 的相关文章

探索跳跃式思维链:DeepSeek创造力垫底,Qwen系列接近人类顶尖水平

探索跳跃式思维链:DeepSeek创造力垫底,Qwen系列接近人类顶尖水平

在大语言模型 (LLM) 的研究中,与以 Chain-of-Thought 为代表的逻辑思维能力相比,LLM 中同等重要的 Leap-of-Thought 能力,也称为创造力,目前的讨论和分析仍然较少...

如何利用 deepseek 高效开发 策略轮动模型 ?

如何利用 deepseek 高效开发 策略轮动模型 ?

近期如何利用deepseek非常火热,我们这些做量化投资的经常重复性的工作就是编程,为此这个周末刚好方便,尝试:如何利用deepseek高效辅助编写量化策略的程序?恰好有个策略轮动模型想要编写测试,那...

DeepSeek使用技巧:1个指令解锁DeepSeek的绘画功能

DeepSeek使用技巧:1个指令解锁DeepSeek的绘画功能

今天给大家分享一个很强的DeepSeek指令。它能过让DeepSeek直接在对话框里生成图片。之前分享过,这次是优化过后的版本。先发指令,再发提示的效果如下:优化过后的指令能显著提高成功率。如果你之前...

光大理财本地化部署DeepSeek,智驭未来,开启智能金融新篇章

光大理财本地化部署DeepSeek,智驭未来,开启智能金融新篇章

在数字经济与实体经济深度融合的当下,金融行业正经历着从“经验驱动”向“数据驱动”的深刻转型。光大理财,作为国内首批银行理财子公司,始终秉持“科技为舟”的战略,积极探索从“数字化”到“数智化”的进阶之路...

Deepseek做AI视频10W+流量,保姆级教程

Deepseek做AI视频10W+流量,保姆级教程

AI视频火爆全网,教育、文化领域账号借此快速崛起。今天,破局圈友@三川将分享从文案仿写到剪辑合成的4步制作法。即使零基础,也能轻松上手。变现途径多样,广告、流量分成、收徒、带货皆可。希望各位圈友掌握A...

杨立钒:DeepSeek“逆袭”电商,成本地部署“黑马”

杨立钒:DeepSeek“逆袭”电商,成本地部署“黑马”

中新经纬2月18日电 题:DeepSeek“逆袭”电商,成本地部署“黑马”作者 杨立钒 华东政法大学商学院副教授近期,杭州计划打造全国跨境电商综合试验第一区,形成“跨境电商+人工智能”示范案例。在电商...